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A Cognitive Architecture for Solving Ill-Structured Problems: Final Report

1 INTRODUCTION

This. project was directed at the development of components of a cognitive architecture for
modeling how people solve ill-structured problems, ones which cannot be solved by application of
routine procedures. The primary focus was on the use of analogies in coordination with rule-based
problem-solving strategies. The core of a cognitive architecture consists of three subsystems: a
problem-solving system, capable of drawing inferences to construct plans for attaining goals; a
memory system, which can be searched in an efficient manner to identify information relevant to
the current problem; and an inductive system, which generates new knowledge structures to be
stored in memory so as to increase the subsequent effectiveness of the problem-solving system
(Holland, Holyoak, Nisbett, & Thagard, 1986). The project investigated all of these component
subsystems. As our work has been reported in detail in several papers already submitted to the
ARI, the present report will provide a relatively brief overview.
1.1 Relevance to the ARI Mission

Our research has combined the development of explicit computational models of cognitive archi-
tecture with allied experimental tests of fundamental theoretical ideas embodied in the models.
This research is directly related to the mission of the ARI, since better models of problem solving
and learning should lead to strategies for improving the effectiveness of Army personnel. More-
over, our emphasis has been on solving ill-structured problems, of the sort that personnel are
likely to face in real situations.

1.2 Components of Analogy Use
Previous researchi suggests that one of the keys to solving novel problems is to use past solutions
to analogous problems to suggest how the new problem might be decomposed (Gick & Holyoak,
1980, 1983; Ross, 1987). Analogical problem solving is a skill that clearly depends on the coordi-
nation of problem solving, memory access, and induction. It is useful to decompose the process
of analogical problem solving into four steps: retrieval, mapping, transfer, and learning. The
retrieval step involves accessing a plausibly useful source analog in memory. It is particularly
difficult to identify candidate source analogs when they are concealed within a large memory
base, and when the source and the target problem were encountered in different contexts and
have salient dissimilarities. These theoretical issues are closely related to those raised in Schank's
(1982) discussion of "reminding". The mapping step requires finding an optimal set of corre-
spondences between the elements of the source and target. The transfer step involves using the
mapping to derive useful inferences about the target (e.g., a new subgoal), which can then be
tested. Finally, learning can result in the induction of new knowledge structures that summarize
the useful commonalities between the source and target that have been discovered, a process we
will refer to as schema induction.

1.3 Accomplishments of the Project

During the three years of this ARI contract, we made major strides in developing and testing
basic components of our proposed architecture. The following accomplishments were especially
significant:

(1) We wrote an extended description of the cognitive architecture embodied in the Common
LISP program PI (Thagard, 1988a).



(2) We extended the PI cognitive model to include analogical problem solving (Holyoak &
Thagard, 1989a). This was the first explicit model to deal with all four major steps in analogical
problem solving, and to suggest an integration of analogical and rule-based solution methods.

(3) We reviewed existing research on computational models of analogy (Thagard, 1988b).
(4) We re-evaluated the model of analogy in PI, deciding that its account of analogical

mapping was insufficiently constrained to adequately capture some important aspects of human
analogical problem solving. Based on an analysis of these constraints (see Section 2.2 below), we
then developed a constraint-satisfaction theory of analogical mapping that has been implemented
in the program ACME (Analogical Constraint Mapping Engine). This mapping model, which
automatically generates a localist connectionist network of mapping hypotheses relating two
symbolic structures, was then applied to more than 20 examples from different domains, including
simulations of the results of several psychological experiments (Holyoak & Thagard, 1989b).

(5) We applied ACME to a different domain: analogies used in chemical education (Thagard,
Cohen, & Holyoak, 1989). This set of applications has direct implications for the analysis of
instructional materials for science education.

(6) We extended the principles underlying ACME to generate a new model of analog re-
trieval, implemented in the program ARCS (Analog Retrieval by Constraint Satisfaction). In
essence, ARCS compares in parallel the target to structures stored in memory, and selects a
small subset of stored structures that best satisfy the constraints that determine the adequacy
of an analogy. The psychological and computational adequacy of ARCS has been tested on four
data bases (Thagard, Holyoak, Nelson, & Gochfeld, 1989). Two of these data bases involve direct
simulation of the results of psychological experiments, and two test the capacity of the model to
deal with retrieval from large data bases.

(7) We wrote an overview of our new models of mapping and retrieval (Holyoak & Thagard,
1990).

(8) We conducted an extensive series of experiments to identify conditions under which
analogical transfer can be expected when a substantial delay and context change intervenes
between presentation of source analogs and of the target problem (Catrambone & Holyoak,
1988, 1989). The results have direct implications for developing robust training procedures that
foster induction of relatively content-independent problem schemas.

(9) We extended the constraint-satisfaction principles embodied in our models of analogi-
cal mapping and retrieval to develop a related model of the evaluation of explanations. In the
ECHO program (Explanatory Coherence by Harmany Optimization), sets of propositions de-
scribing hypotheses and observations, together with explanatory relations among them, provide
the input to a set of routines that construct a constraint network. This network embodies basic
constraints that govern explanatory coherence (e.g., similarity, generality, and analogy to other
accepted explanations). After the network is constructed, it is settled to weed out less coherent
explanations of the data. The ECHO model was applied to numerous cases involving scientific
and legal reasoning (Thagard, 1989; Thagard & Nowak, 1988). The model potentially offers
a highly general tool for modeling decision making, especially in circumstances when detailed
quantitative information about probabilities is lacking.

2 A CONSTRAINT-BASED ARCHITECTURE FOR ANALOGY

We will now briefly review the operation of the analogy models we have developed.
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2.1 Parallel Constraint Satisfaction

Both Gestalt theorists (Maier, 1930) and current cognitive scientists (Hofstadter, 1984) have
emphasized that high-level reasoning has important commonalities with perceptual processing.
We believe these commonalities can be explicitly formulated in models that employ a central
feature of current connectionist models: parallel constraint satisfaction. In general, parallel con-
straint satisfaction is preferable to any serial decision procedure when: (a) a global decision is
composed of a number of constituent decisions, (b) each constituent decision should be guided by
multiple constraints, (c) the outcome of the global decision could vary depending on the order in
which constraints are applied and constituent decisions are made, and (d) there is no principled
justification for preferring any particular ordering of constraints or of constituent decisions. In
essence, all of the constituent decisions are made simultaneously and incrementally, with contin-
uous communication of partial results. (See Thagard, 1986, for a philosophical discussion of the
importance of parallel computation.)

The process of retrieving analogs stored in memory, and the process of mapping a target
analog with a source analog, exhibit all of the above features. It has long been assumed that
retrieval of information from long-term memory involves a parallel comparison of the retrieval
cues in working memory to representations of information in long-term memory (e.g., Selfridge
&Neisser, 1960). This parallel matching process can be modeled by constraint satisfaction, with
constraints based on interconnections among features related to the set of retrieval cues (e.g.,
McClelland & Rumelhart, 1985). The use of a target analog as a retrieval cue for possible source
analogs stored in memory is presumably a relatively complex special case of memory retrieval
in general. The process of mapping two analogs (or an analog and a more abstract schema)
can also be viewed as a process of constraint satisfaction. Our ACME model of mapping and
ARCS model of retrieval (as well as the ECHO model of explanatory coherence) implement a
constraint-satisfaction approach.

2.2 Constraints on Analogical Mapping

We will begin by considering the process of mapping two analogs to each other, after the source
analog has either been spontaneously retrieved or presented by a teacher. Mapping is in some
respects simpler than analog retrieval, as it involves only the target and one source, rather than
the target and an indefinitely large pool of possible analogs stored in memory. It is certainly the
case that people can often readily map a target analog to a source problem that they cannot
easily retrieve (Gick & Holyoak, 1980, 1983; Holyoak & Koh, 1987; Keane, 1988). As we will see,
however, the constraints that govern analogical mapping provide valuable guidance in developing
a broader model that includes the retrieval step.

The core of any constraint-satisfaction theory is the specification of constraints. Three
classes of constraints recur in theoretical treatments of analogy: structural, semantic, and prag-
matic.

2.2.1 Slructural consistency
Many theorists, particularly Gentner (1983), have stressed the importance of consistent

structural correspondences as a criterion for an intuitively satisfying analogical mapping (Burstein,
1986; Falkenhainer, Forbus, & Gentner, 1986; Gick & Holyoak, 1980; Hofstadter, 1984; Winston,
1980). Studies have shown that greater structural consistency leads to greater ease of mapping
(Gick & Holyoak, 1980; Holyoak & Koh, 1987; Ratterman & Gentner, 1987). Loosely speaking,
a source analog can serve as a model for the target if objects in the two analogs can be placed
into correspondence so that relations also correspond. A formal definition of structural consis-
tency can be developed in terms of the concept of a morphism (Palmer, 1989). If we represent
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analogs as sets of interrelated propositions (Gentner, 1983), then structural consistency requires
that if a proposition P in the target is in correspondence with a proposition P' in the source,
then the predicate and argument(s) of P must each correspond to the respective predicate and
argument(s) of P'. Two analogs constitute an isomorphism if the mapping between them is struc-
turally consistent and one-to-one. Importantly, it is not generally possible to decide whether any
pair P and P' are structurally consistent without considering the entire set of correspondences
between propositions in the target and source. This interdependence inherent in the constraint
of structural consistency is illustrates the need for parallel constraint satisfaction.

It is also important to realize that the kinds of analogies of psychological interest virtu-
ally never have the structure of a strict isomorphism. Rather, some elements of the target may
have no apparent corresponding element in the source (or vice versa); some correspondences may
be many-to-one (a homomorphism) or one-to-many (violating the formal definition of a func-
tion); and structural consistency may occasionally be violated. Nonetheless, useful naturalistic
analogies intuitively can be viewed as approximations to isomorphisms (Holland et al., 1986).
Constraint satisfaction provides a mechanism for treating structural and other constraints as
continuous "pressures" (Hofstadter, 1984), rather than rigid restrictions, which is essential for
finding imperfect but useful mappings.

2.2.2 Semantic similarity
Various theorists have suggested, and empirical evidence confirms, that object and predicate

similarity influence the mapping process, with high semantic similarity leading to greater ease of
mapping (Gentner & Toupin, 1986; Holyoak & Koh, 1987; Ross, 1987; Winston, 1980). Empirical
evidence indicates that semantic similarity and structural consistency have distinct effects on the
use of analogy. Semantic similarity has a more pronounced effect on the retrieval of a source
analog than on the mapping process (Gentner & Landers, 1985; Holyoak & Koh, 1987; Ratterman
& Gentner, 1987). In addition, although judgments of the aptness or soundness of analogies and
metaphors are positively correlated with structural consistency, they are negatively correlated
with similarity (Tourangeau & Sternberg, 1982). These separable effects of structural consistency
and semantic similarity motivate treating the two kinds of constraints as distinct.

2.2.3 Pragmatic centrality
Another major type of constraint on mapping that many theorists have proposed involves

the pragmatic importance of the elements of the two analogs-the assessment of relevance to the
goals of the analogist (Holyoak, 1985). In general, people develop a mapping between two analogs
in order to achieve some purpose, such as solving a problem, answering a question, or arguing
for a desired conclusion. Some theorists have emphasized the centrality of causal knowledge in
determining the most appropriate mapping (Winston, 1980); others have focused on the roles of
high-level plans, goals, and functional knowledge (Burstein, 1986; Carbonell, 1983, 1986; Kedar-
Kabelli, 1985). These proposals assume that the analogist uses explicit or implicit knowledge
about the purpose the analogy is intended to serve to help direct the mapping process.

Although few would dispute that pragmatic knowledge influences the use of analogy, there
remains disagreement as to the locus of its influence. Clearly pragmatic considerations weigh
heavily in the initial selection of a plausibly useful source analog and in the subsequent trans-
fer process. It is less clear that pragmatic constraints operate directly in the mapping process,
as pragmatic knowledge is very difficult to separate empirically from structural and semantic
information (Gentner, 1989). However, pragmatic guidance would increase the likelihood that
inferences generated on the basis of an analogical mapping will in fact be relevant to the analo-
gist's goals.
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2.3 Analogical Mapping in ACME

The three basic constraints we have described-isomorphism (i.e., structural consistency and one-
to-one mapping), semantic similarity, and pragmatic centrality-form the theoretical basis for the
ACME model (Holyoak & Thagard, 1989b). ACME operates on propositional representations of
the sort illustrated in Table 1, which represent two analogs used in experiments by Holyoak and
Koh (1987). The "radiation problem" involves using rays to destroy a tumor without destroying
surrounding healthy tissue, and the "lightbulb problem" requires using a laser to fuse a filament
in a lightbulb without breaking the surrounding bulb. Each proposition consists of a predicate, its
arguments, and an identifier for the proposition. Given such inputs, ACME builds a network of
"mapping units" representing possible correspondences between elements (e.g., ray-source=laser).
The units formed are restricted such that only propositions within corresponding major parts of
the analogs (e.g., starting conditions and goals of problems) are mapped, and only elements of
the same logical type (propositions, predicates, and arguments) are mapped.

Once the mapping units are formed, links are set up to enforce the various constraints.
To capture structural consistency, excitatory links are formed between each proposition-mapping
unit and the corresponding predicate-mapping and argument-mapping units, and also among the
latter. Two special units, which are fixed at maximum activation, are used to enforce semantic
and pragmatic constraints. The special semantic unit has excitatory connections to all predicate-
mapping units, with weights ranging from a minimum value representing no similarity to a
maximum value representing identity. As illustrated in Table 1, ACME can be given intermediate
similarity weights for predicates that are similar but not identical, such as ray-source and laser.

The special pragmatic unit (not used in this example) can give extra excitation to map-
pings involving any element stated to be especially "important", or to any mapping unit that
is "presumed" to hold in advance. In addition to representing such pragmatic information by
weights, ACME also has the capacity to represent various types of questions and to selectively
favor mappings that could provide relevant answers.

Once the network has been established, it is allowed to settle to a stable asymptote, using
Grossberg's (1978) activation-updating procedure. The network established for the example in
Table 1 consists of 178 mapping units and 1565 symmetric links. The network reaches asymptote
after 31 cycles of updating, producing the set of "best" mappings of predicates and objects
presented in Table 2 (taken directly from the output of the ACME program). The values given
are asymptotic activation levels (with a maximum value of 1). If more than one mapping for
an element achieves a relatively high activation, the output gives the alternative possibilities.
ACME has been run on numerous other examples, including simulations of empirical data on
human analogical mapping (Gentner & Toupin, 1986; Holyoak & Koh, 1987). Many of these
analogies are considerably less isomorphic than are the analogs in Table 1.

2.4 Analog Retrieval in ARCS

The ACME program takes as its inputs predicate-calculus representations of two analogs, together
with numerical weights reflecting semantic similarity and pragmatic centrality. No attempt is
made to model conceptual knowledge stored in long-term memory, or the computation of seman-
tic similarity from more basic information. The issues of long-term memory organization and
similarity computation must necessarily be addressed, however, in any theory of the retrieval
of analogs. The ARCS program (Thagard et al., 1989) is an attempt to combine aspects of
our earlier PI model of analog retrieval (Holyoak & Thagard, 1989a; Thagard, 1988a) with the
constraint-satisfaction approach of ACME.
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Table 1

Predicate-Calculus Representations of Radiation
and Lightbulb Problems

RADIATION PROBLEM (target)

Start: (ray-source (obj.ray) ri)
(tissue (obj.tissue) r2)
(tumor (obj-tumor) r3 )
(surround (obj-tissue obj.tumor) r4)
(outside (obj-ray obj-tissue) rS)
(can-produce (obj-ray obj-rays-high) r6)
(high-intensity (obj-rays-high) r7)
(can-destroy (obj.rays-high obj.tumor) r8)
(can-destroy (obj.rays.high obj.tissue) r9)
(can-produce (obj-ray obj-rays-low) r10)
(low-intensity (obj-rays-low) r1n)
(cannot-destroy (obj-rays-low obj-tumor) r12)
(cannot-destroy (obj-rays-low obj-tissue) r13)

Goals: (destroy (obj-ray obj-tumor) r2i)
(not-destroyed (obj.tissue) r22)

LIGHTBULB PROBLEM (source)

Start: (laser (obj-laser) bl)
(bulb (obj-bulb) b2)
(filament (obj-filament) b3)
(surround (obj-bulb obj.filament) bW)
(outside (obj-laser obj.bulb) b5)
(can-produce (obj.laser obj-beams.high) b6)
(high-intensity (obj.beams-high) b7)
(can-fuse (obj-beams-high obj-filament) b8)
(can-destroy (obj-beams-high obj-bulb) b9)
(can-produce (obj-laser obj-beamslow) b1O)
(low-intensity (obj-beams-low) b1l)
(cannot-fuse (obj-beams-low obj.filament) b12)
(cannot-destroy (obj.beams-low obj.bulb) b13)

Goals: (fuse (obj-laser obj-filament) b21)
(not-destroyed (obj-bulb) b22)

SIMILARITY: (similar ray-source laser .08)
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Table 2

Asymptotic Activation Values of Best Mappings of Predicates
and Objects in Radiation Problem to Those in Lightbulb Problem

Network has settled by cycle 31.
Test: TESTi Total times: 32
Mon Jul 18 4:31:12 P.M. PDT 1988
Radiation and lightbulb problems.
Units not yet reached asymptote: 0
Goodness of network: 4.81
Calculating the best mappings after 32 cycles.
Best mapping of RAY-SOURCE is LASER. 0.69
Best mapping of TISSUE is BULB. 0.59
Best mapping of TUMOR is FILAMENT. 0.59
Best mapping of SURROUND is SURROUND. 0.77
Best mapping of OUTSIDE is OUTSIDE. 0.77
Best mapping of CAN-PRODUCE is CAN-PRODUCE. 0.88
Best mapping of HIGH-INTENSITY is HIGH-INTENSITY. 0.71
Best mapping of CAN-DESTROY is CAN-DESTROY. 0.57

Mapping with CAN-FUSE is also possible: 0.40
Best mapping of LOW-INTENSITY is LOW-INTENSITY. 0.71
Best mapping of CANNOT-DESTROY is CANNOT-DESTROY. 0.57

Mapping with CANNOT-FUSE is also possible: 0.40
Best mapping of DESTROY is FUSE. 0.71
Best mapping of NOT-DESTROYED is NOT-DESTROYED. 0.71
Best mapping of OBJRAYSLOW is OBJBEAMSLOW. 0.89
Best mapping of OBJRAYSHIGH is OBJBEAMSHIGH. 0.89
Best mapping of OBJ_TUMOR is OBJ_FILAMENT. 0.90
Best mapping of OBJTISSUE is OBJBULB. 0.90
Best mapping of OBJRAY is OBJLASER. 0.90
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Empirical evidence suggests that the three basic types of constraints-structural, semantic,
and pragmatic-that guide analogical mapping operate in the retrieval process as well. Their
relative importance, however, differs across retrieval and mapping. In particular, semantic simi-
larity has a relatively greater influence on initial retrieval of analogs than on mapping (Gentner
& Landers, 1986; Holyoak & Koh, 1987; Ratterman & Gentner, 1987; Ross, 1987). The promi-
nence of semantic constraints in determining analogical access is consistent with the ubiquitous
role of semantic features as retrieval cues for information stored in long-term memory. Unless
there is some minimal semantic overlap between the concepts in a target analog and those in
some potential source stored in memory, there will likely be no retrieval pathways linking them.
Without such retrieval paths, no amount of pragmatic relevance or structural correspondence
will suffice to access the stored analog, even if a useful mapping could in fact be derived using
non-semantic constraints.

ARCS, like PI, incorporates a conceptual network of the sort often postulated in models
of human semantic memory. We assume that long-term memory contains representations of
structured situations, such as problems or stories, which the program models with the kind of
predicate-calculus representations exemplified in Table 1. In addition, the predicates in these
structures are assumed to be tokens of concept types (e.g., the laser predicate in the lightbulb
problem is a token of the long-term memory concept "laser"). Concepts are represented as
frame-like structures with pointers to related concepts of various standard sorts (e.g., synonyms,
superordinates, subordinates, and antonyms). The similarity of any two concepts can be com-
puted as a function of their overlap in the network. The ARCS program bases its similarity
estimates on information drawn primarily from an automated thesaurus, WordNet (Miller, Fell-
baum, Kegl, & Miller, 1987). Although WordNet presumably provides only an approximation
to human conceptual organization, it offers the methodological advantage of being derived by
techniques motivated by very different and independent considerations than our application to
analog retrieval. The semantic data base used in ARCS draws its organization in terms of syn-
onyms, antonyms, superordinates, subordinates, and part-whole relations from WordNet; since
WordNet is still under development, however, only about 70% of the semantic entries in ARCS
are directly derived from WordNet.

The operation of ARCS involves two major steps. Retrieval begins when the target analog
and its constituent predicates are activated. An initial search process finds pathways from the
predicates in the target through intervening concept nodes (which may include multi-step links)
to predicates in various structures stored in long-term memory. ARCS thus resembles the PI
program in that it uses converging concept-based retrieval pathways to make an initial estimate
of the likelihood that a stored structure is a useful analog of the target. ARCS goes beyond PI,
however, in introducing a second major step in which structural and pragmatic constraints are
integrated with information based on semantic similarity. In particular, it is possible for two
structures to have many similar predicates, yet radically different patterns of predicate-argument
structure, making the structures mere "clang associates" rather than useful analogs. PI (like
most other previous retrieval models) is insensitive to structural constraints prior to retrieval.
In contrast, human retrieval of analogs, although strongly influenced by semantic overlap, is
also sensitive to consistent predicate-argument structure (Holyoak & Koh, 1987; Ratterman &
Gentner, 1987).

Accordingly, ARCs has a second major step in which it builds a mapping network similar
to that constructed by ACME. Specifically, for each proposition in the target with a predicate
sufficiently similar to one in some stored structure, an excitatory subnetwork similar to those in
ACME is formed linking the predicates, the propositions, and the corresponding arguments. In
addition, a unit is created to represent the possible mapping of the target to the stored structure
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that includes the similar predicate. This structure-mapping unit is linked to the corresponding
proposition-mapping unit. Such subnetworks are formed based on all the semantic links be-
tween the target and alternative stored structures. As in ACME, inhibitory links are established
between inconsistent mapping units, and the network is allowed to settle. The alternative struc-
tures in memory thus compete to map onto the target, and the structure-mapping unit that first
achieves sufficiently high activation becomes the "winner", an outcome that we assume corre-
sponds psychologically to conscious access to a stored source analog. At this point the source is
available for further processing by an ACME-like mapper.

In modeling the process of analog retrieval, ARCS introduces a number of features that seem
more psychologically plausible than those embodied in ACME. First, it introduces a conceptual
network that allows the program to compute inter-concept similarity from more elementary infor-
mation. Second, it replaces ACME's purely syntactic restrictions on the formation of mapping
units with semantic restrictions. ARCS typically forms far fewer units and links between the
target and a given source analog than would ACME. Finally, ARCS captures one of the main
properties of the earlier PI model, in that the output of the retrieval process provides the be-
ginning of a complete mapping between the target and chosen source. That is, in the process of
retrieving the source, correspondences based on similar predicates are already computed, so that
further post-access mapping can begin with part of the mapping already established.

The ARCS program has been tested on data bases that include synposes of 25 Shakespearian
plays (cf. Winston, 1980), and 100 of Aesop's fables, as well as materials that have been used
in experiments on human analog retrieval (Holyoak & Koh, 1987; Ratterman & Gentner, 1987).
In the domain of Shakespearian synopses, when ARCS is probed with a represen tation of West
Side Story, it succeeds in retrieving the analogous play Romeo and Juliet.

3 IMPLICATIONS FOR THE ARMY

The work accomplished in this project has a number of significant implications for the
development of new procedures for training and practice in the areas of military problem solving
and decision making.
3.1 Training Implications

If our theories of analogical mapping and retrieval are correct, then analogical problem solving
(case-based reasoning) can potentially be improved by attention to semantic, structural, and
pragmatic constraints. Teaching is most directly a matter of mapping rather than retrieval, in
that an instructor can explicitly point out a relevant analog to a student. Since, on our view,
structural consistency is the most important component of analogical mapping, a teacher would
be best advised to make sure that the two analogs are as isomorphic as possible, maintaining sys-
tematic relations between the phenomenon to be understood and the more familiar phenomenon
that serves as its analog. But semantic and pragmatic matters should not be neglected. An
instructor should try to pick an analog that has terms whose meanings are as similar as possible
to those in the domain you are trying to explain. Most crucially, the teacher should avoid using
semantically similar concepts that play disanalogous roles in the analogs. Attending to pragmatic
constraints, the instructor should make clear the purpose of the analogy and how features of the
source analog serve to explain or solve features of the target.

The usefulness of an analogy should, however, go beyond its immediate use in a specific
training episode. The student should be able to recall the analogy later and be able to use it.
Our theory of retrieval suggests that semantic similarity is the central constraint that guides
retrieval, so instructors using analogs that they hope will be remembered later should make sure
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that the pragmatically important components of the two analogs are semantically similar to each
other. In addition, based on the results of Catrambone and Holyoak (1988, 1989), it should be
helpful to teach trainees to analyze multiple examples of a problem type in terms of specific,
goal-oriented questions. Such procedures will foster the induction of problem schemas that are
likely to be accessed even after a delay or context change.

3.2 Potential Aid for Computer-Assisted Problem Solving

The computational work accomplished in this project has provided the basis for the development
of potential aids for decision making and problem solving. It may be possible to construct a
computational device that uses analog retrieval and mapping, together with an evaluation of
relative explanatory coherence, to assist a human problem solver. There is clear potential for use
of such systems by army personnel to enhance their performance.

10



4 REFERENCES

Burstein, M. H. (1986). A model of learning by incremental analogical reasoning and debugging. In R.
Michalski, J. G. Carbonell, &; T. M. Mitchell (Eds.), Machine learning: An artifical intelligence
approach, Vol. 2. Los Altos, Calif.: Kaufmann.

Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from past experi-
ence. In R. Michalski, J. G. Carbonell, &; T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach. Palo Alto, Calif.: Tioga Press.

Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem solving and expertise
acquisition. In R. Michalski, J. G. Carbonell, &; T. Mv. Mitchell (Eds.), Machine learning: An
artifical intelligence approach, Vol. 2. Los Altos, Calif.: Kaufmann.

Catrambone, R., &: Holyoak, K. J. (1988). Long-term analogical transfer. Paper presented at the
meeting of the Psychonomic Society.

Catrambone, R., &: Holyoak, K. J. (1989). Overcoming contextual limitations on problem-solving
transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1147-1156.

Falkenhainer, B., Forbus, K. D., &; Gentner, D. (1986). The structure-mapping engine. Proceedings
of the Fifth National Conference on Artificial Intelligence. Los Altos, Calif.: Morgan Kaufman.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7,
155-170.

Gentner, D. (1989). The mechanisms of analogical reasoning. In S. Vosniadou & A. Ortony (Eds.),
Similarity and analogical reasoning. London: Cambridge University Press.

Gentner, D., &; Landers, R. (1985). Analogical reminding: A good match is hard to find. In Proceedings
of the International Conference on Systems, Man and Cybernetics. Ttacson, AZ.

Gentner, D., &: Toupin, C. (1986). Systematicity and surface similarity in the development of analogy.
Cognitive Science, 10, 277-300.

Gick, Mv. L., & H~olyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355.
Gick, M. L., &z Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology,

15, 1-38.
Grossberg, S. (1978). A theory of visual coding, memory, and development. In E. L. J. Leeuwenberg

&: H. F. J. Buffart (Eds.), Formal theories of visual perception. New York: Wiley.
HHofstadter, D. R. (1984). The Copycat project: An experiment in nondeterministic and creative

analogies. Cambridge, Mass.: MIT A.I. Laboratory Memo 755.
Holland, J. H., Holyoak, K. J., Nisbett, R. E., &; Thagard, P. (1986). Induction: Processes of inference,

learning, and discovery. Cambridge, Mass.: Bradford Books/MIT Press.
Holyoak, K. J. (1985). The pragmatics of analogical transfer. In G. H. Bower (Ed.), The psychology

of learning and motivation, Vol. 19. New York: Academic Press.
SHolyoak, K. J., &; Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory

Cognition, 15, 332-340.
Holyoak, K. J., & Thagard, P. (1989a). A computational model of analogical problem solving. In S.

Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. Cambridge, Mass.: Cam-
bridge University Press.

Holyoak, K. J., & Thagard, P. (1989b). Analogical mapping by constraint satisfaction. Cognitive
Science, 13, 295-355.

HHolyoak, K. J., &; Thagard, P. (1990). A constraint-satisfaction approach to analogue retrieval and
mapping. In K. Gilhooly, M. Keane, R. Logie, & G. Erdos (Eds.), Lines of thinking. Chichester,
U.K.: Wiley.

Keane, M. (1988). Analogical problem solving. Chichester, England: Ellis Horwood.



Kedar-Cabelli, S. (1985). Purpose-directed analogy. Proceedings of the Seventh Annual Conference of
the Cognitive Science Society.

Maier, N. R. F. (1930). Reasoning in humans. I. On direction. Journal of Comparative Psychology,
10, 115-143.

Miller, G. A., Fellbaum, C, Kegl, J, & Miller, K. (1987). WordNet: An electronic lexical reference
system based on theories of lexical memory. Princeton University Cognitive Science Laboratory
Technical Report 11.

McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general
and specific information. Journal of Experimental Psychology: General, 114, 159-188.

Palmer, S. E. (1989). Levels of description in information processing theories of analogy. In S. Vos-
niadou & A. Ortony (Eds.), Similarity and analogical reasoning. London: Cambridge University
Press.

Ratterman, M., & Gentner, D. (1987). Analogy and similarity: Determinants of accessibility and
inferential soundness. In Proceedings of the Ninth Annual Conference of the Cognitive Science
Society. Hillsdale, N.J.: Erlbaum.

Ross, B. H. (1987). This is like that: The use of earlier problems and the separation of similarity
effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 629-639.

Schank, R. C. (1982). Dynamic memory. Cambridge, Mass.: Cambridge University Press.
Selfridge, 0. G., & Neisser, U. (1960). Pattern recognition by machine. Scientific American, 203,

60-68.
Thagard, P. (1986). Parallel computation and the mind-body problem. Cognitive Science, 10, 301-318.
Thagard, P. (1988a). Computational philosophy of science. Cambridge, Mass.: Bradford Books/ MIT

Press.
Thagard, P. (1988b). Dimensions of analogy. In D. Helman (Ed.), Analogical reasoning. Dordrecht,

Holland: Kluwer.
Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12, 435-467.
Thagard, P., Cohen, D., & Holyoak, K. J. (1989). Chemical analogies. In Proceedings of the Eleventh

International Joint Conference on Articficial Intelligence. San Mateo, CA: Kaufmann.
Thagard, P., Holyoak, K. J., Nelson, G., & Gochfeld, D. (1989). Analog retrieval by constraint

satisfaction. Manuscript in preparation, Cognitive Science Laboratory, Princeton University.
Thagard, P., & Nowak, G. (1988). The explanatory coherence of continental drift. In A. Fine &

J. Leplin (Eds.), PSA 1988 (Vol. 1, pp. 118-126). East Lansing, MI: Philosophy of Science
Association.

Tourangeau, R., & Sternberg, R. J. (1982). Understanding and appreciating metaphors. Cognition,
11, 203-204.

Winston, P. H. (1980). Learning and reasoning by analogy. Communications of the ACM, 23, 689-703.

12


